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When they introduced the theory of categories in 1945, Eilenberg and Mac Lane
suggested the possibility of “functorizing” the study of general algebraic systems.
The author has carried out the first steps of this program, making extensive use of
the theory of adjoint functors, as introduced by Kan® and refined by Freyd.2 In
some directions a very great degree of useful generality can be achieved; for ex-
ample, the constructions of free algebras, tensor algebras, monoid rings, enveloping
algebras of Lie algebras, abelianization of groups, and covariant extension of rings
for modules can all be viewed in a unified way as adjoints to “algebraic” functors,
and we show that such adjoints always exist. Also, by formalizing ‘“‘semantics”
itself as a functor and showing that it has an adjoint, we are able to give a new
characterization of equational classes of algebras (viewed as abstract categories)
and also to provide a canonical tool for the partial analysis of many nonalgebraic
categories and functors.

By an algebraic theory we mean a small category A whose objects are the natural
numbers 0, 1, 2, ... and in which each object n is the categorical direct product of
the object 1 with itself » times. By an n-ary operation of A is meant any map n —
lin A. Since n is a product, the projections =,”: n—1,s=0,1, ...,n — 1 are
always n-ary operations for each n in any algebraic theory, but in general there will
be more. The maps n — m in an algebraic theory A are in one-to-one correspond-
ence with the m-tuples of n-ary operations of A. Any “presentation’ of a concept
of algebraic structure (e.g., groups, modules over a given ring, Jordan algebras,
lattices, ete.), which involves a set of symbols denoting finitary operations together
with a set of equations (= identities) relating composite operations, determines
an algebraic theory, and conversely every algebraic theory has such presentations.
By a mapping between algebraic theories we will understand a functor which pre-
serves products and takes 1 into 1. Algebraic theories and the mappings between
them thus form a category 3.

Each algebraic theory A determines a large category 8’ whose class of objects is
just the equational class (variety) of all algebras of type A, and whose maps are all
(into) homomorphisms between these. An algebra of type A can be viewed as a
product preserving functor A — § from A to the category of sets; a homomorphism
of algebras is then just a natural transformation between such functors. If A is
the algebraic theory whose only n-ary operations are projections (i.e., A is equivalent
to the dual of the category of finite sets), then the category of algebras $4 is just
the category 8 of sets. Every map f: A — B of algebraic theories determines in an
obvious way a functor $: $® — s which preserves underlying sets, i.e., for
which Ug = $PU,, where Uy: s — 8, Ug: $® — § are the underlying set
functors (notice the order in which we write composition). We call any functor of
the form 8 an algebraic functor, and we call any category of the form $* an
algebraic category. Any algebraic theory A is equivalent to the dual of the full cate-
gory of finitely generated free algebras in its associated algebraic category.
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TuEoREM. Every algebraic functor has an adjoint.

For example, the category of rings (with unit) and that of monoids are algebraic,
and the functor which assigns to each ring the monoid consisting of the same ele-
ments under multiplication alone is an algebraic functor. The adjoint to this func-
tor is the well-known construction of the monoid ring. Other instances of this
theorem were mentioned in the first paragraph. Note that for f: A — B in 3,
the natural transformation from the identity functor on 8 to F$, where F is the
adjoint of 8, need not be a monomorphism (for example, not every Jordan algebra
is special—on the other hand every distributive lattice can be embedded in a Boo-
lean ring); a description of those f for which this is so would provide a unified
solution to a great number of problems in algebra—for example, when can an
algebra be enlarged to contain a root of a given equation? ,

If we write AS = U,, f& = 8, we obtain a functor & which we call algebraic
semantics; the domain of & is the dual 3* of the category of algebraic theories, and
we take as its codomain the category X whose objects are functors U:% — § with
arbitrary domain category and with the category of sets as codomain, subject only
to the restriction that for each natural number n, the class of all natural transfor-
mations U” — U is small, where U” assigns to each X the nth Cartesian power of
XU; amap T:U — U’ in X is to be any functor T:% — &’ for which U = TU’.

THEOREM. Algebraic semantics has an adjoint ©:X — 3* (which we call algebraic
structure), and furthermore &S is naturally equivalent to the identity functor of 3*.
Ezplicitly, for any U in X the n-ary operations of the algebraic theory US are the
natural transformations U™ — U.

Thus, any category & equipped with an ‘“underlying set functor” U determines an
algebraic category S(W®) together with a functor ®:% — $U®) which preserves
underlying sets, and given any other such functor ¥:9¢ — $®, there is a unique
f:A — US in 3 such that ¥ = &8, Also, the operations which define an alge-
braic category are in natural one-to-one correspondence with the natural operations
on its underlying set functor. Thus the functor & becomes most interesting when
applied to ‘““‘underlying set functors” on nonalgebraic categories. For example, if
we take for & the dual of the category of sets and for U the (contravariant) power
set functor, the algebraic structure of U is the theory of Boolean algebras and &
assigns to each set the Boolean algebra of its subsets. Again, if we take U as the
functor which assigns to every group G the set of all integer-valued functions on G
with finite support, and to every group homomorphism g:G — G’ the function
gU:GU — G'U defined by (z')(f)(gU) = E{xflxg = z'} for f ¢ GU, 2’ ¢ ', then
U& is an extension of the theory of rings which includes two additional unary oper-
ations, ‘‘involution” and “trace.”

The above theorem implies that a category X is equivalent to some algebraic
category ¢ff it has some underlying set functor U such that the particular functor
®:9 — 8 described above is an equivalence where A = US. In that case we
must actually have U = Hom(G, ?) where G is an object in & such that G& is a
free A-algebra on one generator. These observations enable us to completely char-
acterize algebraic categories in the theorem below. We first define some terms.

By an equalizer and coequalizer of a pair of maps
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in a category &, we mean respectively an inverse limit j: K — X and a direct limit
p:Y — K* of the above diagram in the sense of Kan.? A map p is called a regular
eptmap ff it is a coequalizer of some pair of maps. A category has finite limits iff
it has an initial and a final object and if all possible binary products and coproducts,
as well as all possible equalizers and coequalizers, exist. A pair f,, f1 as above is
called a precongruence iff the corresponding f: X — Y X Y is monic as well as re-
flexive, symmetrie, and transitive in an obvious sense; the pair is called a con-
gruence iff f is the equalizer of the pair <mp, mp> where 7;:Y X Y — Y are the
projections and p is the coequalizer of <fy, fi>. In a category with finite limits,
every congruence is a precongruence, while in any algebraic category the converse
is also true.

An object G in a category X is abstractly finite iff the following three conditions
hold: (a) for every object X, the class Hom(G, X) of maps G — X is small (i.e., is
a “set’”); (b) for every small class I, the I-fold coproduct (= free product) I-G
exists; (c¢) any map G — I-G factors through some I’-G where I’ C I and I' is
finite. A map f:Y — Z in X is G-surjective iff every map G — Z factors across f.
An object G is a regular projective generator iff the G-surjective maps are precisely
the regular epimaps.

THEOREM. Let & be a category with the following properties: (0) X has finite
limits, (1) X has an abstractly finite regular projective generator G. Then there is an
algebraic theory A and a functor &:% — 8 which is full, faithful, and has an adjoint,
and the free objects in % coincide with those in 8 (i.e., (I-G)® = I-(G®)). Further-
more, ® is an equivalence iff (2) every precongruence in X is a congruence. Conditions
0, 1, 2 are necessary and suffictent that X be equivalent to some algebraic category.

This theorem is closely related to an unpublished theorem characterizing ‘“quasi-
primitive” categories of algebras which was found by J. R. Isbell, who also pointed
out that my original proof of the above could be simplified by noting that under
conditions 0 and 1, every subalgebra of X®, for X in &, is itself of the form X'®.
A category satisfying 0 and 1, but not 2, is that of all torsion-free abelian groups;
the adjoint to & in this case consists of dividing by the torsion subgroup.

CoOROLLARY. If & vs an algebraic category and if € is any small category with
finitely many objects, then the full category X of functors @ — X and natural transfor-
mations thereof is itself equivalent to an algebraic category.

The proof of this corollary involves interpreting the underlying set of a functor
to mean the product of the underlying sets of the objects involved. When € has
exactly one object, then € is a monoid and the corollary refers to the well-known
notion of a monoid acting by endomorphisms of an algebra to form a new algebra.

COROLLARY. An abelian category is algebraic iff it is the category of all modules
over some assoctative ring with unity.

This follows immediately from a theorem of Freyd;?> condition 2 of the theorem
above is always satisfied in an abelian category. The nature of the rings whose
existence is implied by these two corollaries is being investigated.*

* This constitutes a partial summary of a dissertation submitted in partial fulfillment of the
requirements for the degree Doctor of Philosophy at Columbia University. The author is grate-
ful to Professors Eilenberg, Mac Lane, and Freyd for their inspiration and encouragement.
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THE CRYSTAL STRUCTURE OF AN INTERMOLECULAR
NUCLEOSIDE COMPLEX: ADENOSINE AND 5-BROMOURIDINE*
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Communicated by Linus Pauling, September 9, 1963

The concept of hydrogen-bonding specificity between the purine and pyrimidine
bases, adenine and thymine, guanine and cytosine, is fundamental in the present
theory of nucleic acid structure and replication. The base-pairing scheme pro-
posed by Watson and Crick! in their structural hypothesis for the DN A molecule
has gained wide acceptance among biologists and recently has received strong
support from three-dimensional Fourier analysis of DNA fiber X-ray diffraction
data,? and from structure analysis of single crystals containing guanine and cyto-
sine derivatives in an intermolecular complex.® ¢ On the other hand, Hoogsteen®
has found a different base-pairing configuration in a crystalline complex of 9-methyl
adenine and 1-methyl thymine. Here, the ring nitrogen N3 of thymine hydrogen-
bonds to the imidazole nitrogen N7 of adenine instead of bonding to N1 as in the
Watson-Crick model. A similar pairing configuration has recently been found
in a crystalline complex containing 9-ethyl adenine and 1l-methyl uracil.® This
pairing is of considerable interest since it is thought to occur in the triple-stranded
2:1 complex of polyuridylic acid and polyadenylic acid.”

The information derived from these structure investigations has prompted us to
investigate other possibilities for cocrystallization of important compounds known
to interact in biological systems. The present work describes a single crystal
analysis of a nucleoside intermolecular complex between adenosine and 5-bromo-
uridine. The presence of the sugars on the purine and pyrimidine bases brings this
model system close to the biological systems of interest. Furthermore, the bromine-
substituted derivative is of particular interest since the closely related molecule
bromodeoxyuridine is a well-known mutagenic agent. The results show the exist-
ence of a third type of base-pair configuration.

Methods.—The adenosine-5-bromouridine complex was crystallized in clusters of thin needles by
slow evaporation from an aqueous solution containing equimolar quantities of these compounds.
Ultraviolet absorption measurements on aqueous solutions made from single crystals confirmed
the presence of the two nucleosides in approximately equal proportions. The crystals were found
to be orthorhombic, space group P22;2, with a = 4.80 £ 0.01, b = 15.19 &= 0.01, and ¢ = 31.76 =
0.03 A; the density determined in benzene-methyliodide solutions was 1.706 =+ 0.010 gm/cc.
The unit cell contains four asymmetric units, each consisting of an adenosine-bromouridine pair
and a water molecule. Equi-inclination Weissenberg photographs were taken about the a axis
with filtered CuKa radiation, using the multiple film technique. The intensities were estimated
visually and corrected with the appropriate Lorentz-polarization factors. A total of 2,511
reflections were indexed, of which 2,015 were nonzero, representing about 90 per cent of the data
accessible in the copper sphere. No correction was made for absorption effects.



